C3-C4	1.385(3)	C9—C10	1.353 (3)
C403	1.364 (3)	C10-C11	1.371 (3)
C4—C5	1.376(3)	C11—N2	1.372 (3)
C5—C6	1.387 (3)	C11—C12	1.469 (3)
01—N1	1.225 (3)	O4—N2	1.324 (2)
C6-C1-C2	122.6 (2)	01—N1—C1	118.3 (2)
C6-C1-NI	118.3 (2)	N2—C7—C8	121.5 (2)
C2_C1_N1	119.2 (2)	C9—C8—C7	118.9 (3)
C3-C2-C1	119.0(2)	C10C9C8	118.6(2)
C2-C3-C4	119.5 (2)	C11—C10—C9	122.2 (2)
O3-C4-C5	121.7 (2)	N2-C11-C10	117.7 (2)
O3—C4—C3	117.5 (2)	N2-C11-C12	116.6(2)
C5-C4-C3	120.7 (2)	C10C11C12	125.7 (2)
C6-C5-C4	119.8 (2)	O4—N2—C7	120.4 (2)
C1-C6-C5	118.4 (2)	O4—N2—C11	118.6(2)
02-N1-01	124.1 (2)	C7—N2—C11	121.0(2)
02 - N1 - C1	117.5 (3)		

The ring H atoms were included at geometrically idealized positions with the exception of atom HO3 which was located from a Fourier difference map and its coordinates refined. An isotropic displacement parameter of 6.0 Å^2 was assigned to all H atoms.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: VAXSDP (Frenz, 1978). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: VAXSDP.

The authors thank FINEP, CNPq and FAPESP (Brazilian agencies), COLCIENCIAS (Colombian agency) and Universidad del Valle (Colombia) for financial support.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1163). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Burland, M. D., Miller, R. D. & Walsh, C. A. (1994). Chem. Rev. 94, 31-75.
- Coppens, P. & Schmidt, G. M. J. (1965). Acta Cryst. 18, 654-663.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Frenz, B. A. (1978). The Enraf-Nonius CAD-4 SDP a Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Determination. Computing in Crystallography, edited by H. Schenck, R. Olthof-Hazekamp, H. van Koningsveld & G. C. Bassi, pp. 64-71. Delft University Press.
- Gorres, B. T., McAfee, E. R. & Jacobson, R. A. (1975). Acta Cryst. B31, 158-161.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Kitazawa, M., Higuchi, R., Takahashi, M., Wada, T. & Sasabe, H. (1995). J. Appl. Phys. 78, 709-716.
- Laing, M. & Nicholson, C. (1971). J. S. Afr. Chem. Inst. 24, 186-195.
- Marder, S. R., Gorman, C. B., Tiemann, B. G. & Cheng, L. T. (1993).
- J. Am. Chem. Soc. 115, 3006–3007. Moreno-Fuquen, R., de Almeida Santos, R. H. & Valderrama, J. (1995). Annais Assoc. Bras. Quim. 44, 28–33.
- Prasad, P. N. & Williams, D. J. (1991). Introduction to Nonlinear Optical Effects in Molecules and Polymers. First edition. New York: John Wiley.

- Pugh, D., Morley, J. O., Nicoud, J. F. & Twieg, R. J. (1987). Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 1, edited by D. S. Chemla & J. Zyss, pp. 193–291. Orlando, USA: Academic Press.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany. Tsoucaris, P. G. (1961). Acta Cryst. 14, 914–917.

Acta Cryst. (1996). C52, 1747-1750

A Multichromophoric Bicyclo[2.2.2]octenone and a Photorearranged Ester Derivative

Golam Mostafa,^a Siddhartha Ray,^a Raghunath Singh^b and Saswati Lahiri^b

^aDepartment of Solid State Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India, and ^bDepartment of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, India. E-mail: sspmm@iacs.ernet.in

(Received 23 June 1995; accepted 11 December 1995)

Abstract

Both the title compound, 5,6-dibenzoyl-4-methoxybicyclo[2.2.2]oct-5-en-2-one, $C_{23}H_{20}O_4$, and its photolysis product obtained in the solution phase, 4-methoxy-6-*exo*-methoxycarbonyl-5-(1-phenoxy-1-phenylmethylene)bicyclo[2.2.2]octan-2-one†, $C_{24}H_{24}O_5$, both crystallize in the monoclinic space group $P2_1/c$. The structures were solved by direct methods. The conformations established for the two compounds facilitate understanding of the mechanism of the photoreaction in solution.

Comment

UV irradiation of a solution of 5,6-dibenzoyl-4methoxybicyclo[2.2.2]oct-5-en-2-one, (I), in methanol gave the ester 4-methoxy-6-*exo*-methoxycarbonyl-5-(1phenoxy-1-phenylmethylene)bicyclo[2.2.2]octan-2-one, (II), *via* a ketene intermediate formed by a 1,5-phenyl migration in compound (I) (Lahiri & Singh, 1989). The ¹H NMR spectrum of compound (II) showed a highly shielded δ value (2.55 p.p.m.) for the methoxy bridge-

[†] IUPAC name: methyl 4-methoxy-2-oxo-5-(1-phenoxy-1-phenylmethylene)bicyclo[2.2.2]octanyl-6-*exo*-carboxylate.

head proton, instead of a value in the normal range δ = 3-4 p.p.m. This effect is possible only if the methoxy group is shielded by the adjacent phenyl-ring current. Interestingly, in the unsymmetrical cis-1,2-dibenzoylalkene system, it has been observed (Singh, Sinha & Lahiri, 1992) that the 1,5-phenyl migration takes place from the benzoyl group attached to the more crowded olefinic C atom, for example, atom C5 in compound (III). The formation of compound (II), therefore, must have occurred either via a different migratory route or via a bond rotation of one of the benzoyl groups, which is likely to be a facile process in solution. To decide upon the reaction pathway for this phototransformation, the molecular structures of both compounds (I) and (II) had to be established unambiguously by X-ray crystallography.

ORTEPII (Johnson, 1976) plots for the parent and product molecules with the atom-labelling schemes are shown in Figs. 1 and 2, respectively. In the parent compound, (I), the benzoyl carbonyl groups C10=03 and C17=04 are anti and syn, respectively, in relation to the C5=C6 double bond, a situation similar to that observed in compound (III) (Mukhopadhyay, Ray & Lahiri, 1987). But Fig. 2 reveals that 1,5phenyl migration during phototransformation has taken place from the 6-benzoyl moiety and not from the 5-benzoyl moiety as in the case of compound (III). The syn-phenoxy conformation of the resulting ester, (II), explains the observed highly shielded δ value of the methoxy bridgehead group due to the adjacent phenyl ring C11-C16 (Fig. 2). This clearly suggests that during the photoreaction in methanol solution, the molecule of (I) flips to its 5-syn,6-anti conformer, thus facilitating migration of the phenyl group from C17 to O3, resulting in a ketene which on reaction with methanol produces the ester (II). This process, involving a flipping, is evidently very unlikely to occur in a crystal and quite expectedly, photolysis in the solid state has been observed to yield the other 1,5-phenyl migration isomer (Maji & Lahiri, unpublished).

Fig. 1. ORTEPII (Johnson, 1976) diagram of compound (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2. ORTEPII (Johnson, 1976) diagram of compound (II) with displacement ellipsoids drawn at the 50% probability level.

Experimental

The enone (I) was prepared by the Diels-Alder addition of 1,3-dimethoxy-1,3-cyclohexadiene and dibenzoylacetylene, followed by hydrolysis of the cycloadduct. Ester (II) was obtained from compound (I) by UV irradiation. The densities D_m of both compounds were measured by flotation in aqueous KBr.

Compound (I)

Crystal data $C_{23}H_{20}O_4$ $M_r = 360.41$

Mo $K\alpha$ radiation $\lambda = 0.7107$ Å

Monoclinic	Cell parameters from 25	Table 2. Selecte	ed geometri	c parameters (Å,	°) for (I)
$P2_1/c$	reflections	C2-C1	1.503 (5)	C6C5	1.339 (4)
a = 11.059 (4) Å	$\theta = 5.5 - 12.5^{\circ}$	C6C1	1.511 (4)	C10C5	1.496 (4)
b = 14.188(5) Å	$\mu = 0.089 \text{ mm}^{-1}$	C7-C1	1.543 (4)	C17 - C6	1.488 (4)
c = 11.996(5) Å	T = 300 K	$C_3 = C_2$	1.504 (5)	C_{8}	1.339 (4)
$\beta = 102.39(3)^{\circ}$	Prismatic	$01 - C_2$	1.207 (4)	02 = 03	1.478 (4)
$\mu = 102.39(3)$	$0.54 \times 0.38 \times 0.36$ mm	C4C3 C5C4	1.511 (4)	03-C10	1.213 (3)
V = 1030.4(12) R	Colourless	C8-C4	1.538 (4)	C18-C17	1.484 (4)
Z = 4	Colouriess	O2—C4	1.420 (4)	O4C17	1.212 (3)
$D_x = 1.30 \text{ Mg m}^3$		C6-C1-C2	106.0 (3)	C5-C6-C1	114.0 (3)
$D_m = 1.29 \text{ Mg m}^{-3}$		C7-C1-C2	107.3 (3)	C17-C6-C1	124.0 (3)
		C7-C1-C6	107.6 (2)	C17-C6-C5	121.9 (3)
Data collection		C3-C2-C1	112.3 (3)	C8-C7-C1	110.5 (3)
Nicolet R3m/V diffractom-	$\theta_{max} = 25^{\circ}$	01-C2-C1	124.9 (3)	C7_C8_C4	109.1 (2)
ator	$h = 0 \longrightarrow 14$	01 - C2 - C3	122.7 (3)	CH = CI0 = C5	119.6 (3)
	$h = 0 \rightarrow 17$	$C_4 - C_3 - C_2$	109.5(3) 107.4(3)	03-010-011	122 0 (3)
ω /20 scans	$k = 0 \rightarrow 17$	$C_{3} = C_{4} = C_{3}$	107.4 (3)	C_{12} $-C_{11}$ $-C_{10}$	119.0 (3)
Absorption correction:	$l = -15 \rightarrow 15$	C8-C4-C5	106.8 (2)	C16-C11-C10	121.6 (3)
none	2 standard reflections	O2-C4-C3	113.0 (3)	C18-C17-C6	119.6 (3)
3012 measured reflections	monitored every 100	O2—C4—C5	106.8 (2)	O4—C17—C6	119.6 (3)
2853 independent reflections	reflections	O2C4C8	114.3 (3)	O4—C17—C18	120.8 (3)
1796 observed reflections	intensity decay: no	C6C5C4	114.6 (3)	C19-C18-C17	118.0 (3)
$[I > 2.5\sigma(I)]$	significant variation	C10-C5-C4	118.9 (2)	$C_{23} - C_{18} - C_{17}$	122.4 (3)
$R_{\rm c} = 0.0135$	8	()0(0	120.2 (3)	(9-02-04	110.1 (5)
R _{int} = 0.0135		Table 3. Hydr	rogen-bondi	ng geometry (Å,	°) for (I)
Refinement		D	H A	$D \cdots A$	$D = H \cdot \cdot \cdot A$
Refinement on F	$(\Delta/\sigma)_{\rm max} = 0.208$	C16—H16···O1'	2.434 (3.218 (5)	138.8 (11)
R = 0.047	$\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$	C21—H21···O3"	2.393 (13) 3.255 (6)	149.2 (10)
wR = 0.052	$\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$	Symmetry codes: (i)	-x, -y, 2-x	z; (ii) $x - 1, y, z.$	
S = 1.169	Extinction correction: none				
1796 reflections	Atomic scattering factors	Compound (II)			
220 parameters	from International Tables	Crystal data			

 $C_{24}H_{24}O_5$

 $P2_{1}/c$

 $M_r = 392.46$

Monoclinic

a = 6.630 (3) Å

b = 21.780 (6) Å

c = 14.759 (5) Å

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (I)

for X-ray Crystallography

(1974, Vol. IV)

H atoms fixed

 $w = 1.1685/[\sigma^2(F)]$

 $+ 0.000625F^2$]

$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	х	у	z	U_{eq}
C1	0.0146 (3)	0.1062 (2)	0.7692 (3)	0.043
C2	0.0442 (3)	0.1048 (3)	0.8975 (3)	0.060
C3	0.1808 (3)	0.0965 (3)	0.9464 (3)	0.061
C4	0.2496 (3)	0.0882 (2)	0.8488 (3)	0.042
C5	0.1912 (3)	0.0080 (2)	0.7732 (2)	0.034
C6	0.0692 (3)	0.0168 (2)	0.7324 (2)	0.034
C7	0.0851 (3)	0.1901 (2)	0.7315 (3)	0.054
C8	0.2255 (3)	0.1786 (2)	0.7767 (3)	0.050
C9	0.4536 (4)	0.1317 (3)	0.9529 (4)	0.097
C10	0.2729 (2)	-0.0675 (2)	0.7427 (2)	0.037
C11	0.2794 (3)	-0.1601(2)	0.8002 (3)	0.037
C12	0.3528 (3)	-0.2302 (2)	0.7687 (3)	0.050
C13	0.3648 (3)	-0.3157 (3)	0.8235 (3)	0.061
C14	0.3059 (4)	-0.3314 (3)	0.9122 (3)	0.059
C15	0.2323 (3)	-0.2633 (3)	0.9432 (3)	0.058
C16	0.2182 (3)	-0.1770 (2)	0.8876 (3)	0.045
C17	-0.0026 (3)	-0.0539 (2)	0.6533 (2)	0.036
C18	-0.1375 (3)	-0.0643 (2)	0.6466 (2)	0.034
C19	-0.2124 (3)	-0.0859 (2)	0.5416 (3)	0.045
C20	-0.3387 (3)	-0.0970 (2)	0.5318 (3)	0.054
C21	-0.3902 (3)	-0.0880(2)	0.6252 (3)	0.056
C22	-0.3154 (3)	-0.0687 (2)	0.7298 (3)	0.060
C23	-0.1892 (3)	-0.0558 (2)	0.7406 (3)	0.048
01	-0.0315 (3)	0.1087 (2)	0.9565 (2)	0.101
O2	0.3768 (2)	0.0655 (2)	0.8871 (2)	0.064
O3	0.3360 (2)	-0.0489 (2)	0.6745 (2)	0.062
O4	0.0494 (2)	-0.1016 (2)	0.5941 (2)	0.063

 $\beta = 98.35 (3)^{\circ}$ $V = 2108.7 (13) Å^{3}$ Z = 4 $D_{x} = 1.24 \text{ Mg m}^{-3}$ $D_{m} = 1.25 \text{ Mg m}^{-3}$ Data collection Locally assembled computercontrolled diffractometer system incorporating

Huber crystal orienter

2359 measured reflections

1323 observed reflections

 $[I > 2\sigma(I)]$

Refinement on F

Refinement

R = 0.063

wR = 0.064S = 1.274

1745 independent reflections

Absorption correction:

 $\omega/2\theta$ scans

none

 $R_{int} = 0.0132$ $\theta_{max} = 55^{\circ}$ $h = -6 \rightarrow 6$ $k = 0 \rightarrow 21$ $l = 0 \rightarrow 14$ 3 standard reflections monitored every 50 reflections intensity decay: no

Cu $K\alpha$ radiation

Cell parameters from 25

0.420 \times 0.160 \times 0.075 mm

 $\lambda = 1.5418 \text{ Å}$

reflections

 $\mu = 0.62 \text{ mm}^{-1}$

 $\theta = 10 - 30^{\circ}$

T = 300 K

Colourless

Prismatic

significant variation

 $(\Delta/\sigma)_{max} = 0.160$ $\Delta\rho_{max} = 0.19 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.29 \text{ e} \text{ Å}^{-3}$ Extinction correction: none

1323 reflections	Atomic scattering factors
238 parameters	from International Tables
H atom fixed	for X-ray Crystallography
$w = 1.2738/[\sigma^2(F)]$	(1974, Vol. IV)
$+ 0.00005F^{2}$]	. ,

Table 4. Fractional atomic coordinates and equivalent isotropic displacement parameters $(Å^2)$ for (II)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	U_{eq}
CI	0.3735 (12)	0.1088 (3)	0.9210 (5)	0.049
C2	0.5405 (13)	0.0619 (3)	0.9232 (5)	0.053
C3	0.5420 (10)	0.0309 (3)	0.8303 (4)	0.048
C4	0.3474 (12)	0.0517 (3)	0.7638 (5)	0.046
C5	0.3470 (11)	0.1206 (3)	0.7506 (5)	0.043
C6	0.3921 (12)	0.1546 (3)	0.8422 (4)	0.040
C7	0.1684 (11)	0.0755 (4)	0.8978 (5)	0.080
C8	0.1596 (12)	0.0356 (3)	0.8107 (5)	0.057
С9	0.4984 (14)	0.0154 (4)	0.6348 (5)	0.090
C10	0.3057 (12)	0.1532 (3)	0.6751 (5)	0.048
C11	0.2334 (9)	0.1364 (2)	0.5777 (3)	0.048
C12	0.0734 (9)	0.0951 (2)	0.5546 (3)	0.069
C13	0.0088 (9)	0.0805 (2)	0.4630 (3)	0.083
C14	0.1042 (9)	0.1071 (2)	0.3945 (3)	0.079
C15	0.2642 (9)	0.1484 (2)	0.4176 (3)	0.097
C16	0.3288 (9)	0.1631 (2)	0.5092 (3)	0.070
C17	0.1830 (8)	0.2571 (2)	0.6693 (3)	0.041
C18	-0.0145 (8)	0.2393 (2)	0.6794 (3)	0.049
C19	-0.1737 (8)	0.2817 (2)	0.6647 (3)	0.058
C20	-0.1353 (8)	0.3419 (2)	0.6399 (3)	0.070
C21	0.0623 (8)	0.3597 (2)	0.6297 (3)	0.073
C22	0.2214 (8)	0.3173 (2)	0.6444 (3)	0.055
C23	0.6086 (16)	0.1822 (4)	0.8539 (5)	0.049
C24	0.8101 (15)	0.2626 (4)	0.9249 (6)	0.107
01	0.6691 (9)	0.0494 (2)	0.9887 (3)	0.077
O2	0.3255 (9)	0.0161 (2)	0.6824 (4)	0.063
O3	0.3456 (7)	0.2168 (2)	0.6857 (3)	0.046
O4	0.7491 (9)	0.1630 (3)	0.8216 (4)	0.068
O5	0.6119 (10)	0.2318 (3)	0.9062(4)	0.083

Table 5. Selected geometric parameters (Å, °) for (II)

C2—O1	1.223 (9)	C7C1	1.535 (9)
C4—O2	1.419 (8)	C3C2	1.530 (9)
C9—O2	1.430 (10)	C4—C3	1.570 (9)
C10—O3	1.415 (8)	C5C4	1.514 (9)
C17—O3	1.384 (6)	C8C4	1.550 (10)
C23—O4	1.183 (10)	C6—C5	1.533 (9)
C23—O5	1.325 (10)	C10-C5	1.317 (10)
C24—O5	1.466 (10)	C23—C6	1.543 (12)
C2—C1	1.503 (10)	C8—C7	1.547 (9)
C6—C1	1.551 (9)	C11C10	1.493 (8)
C9—O2—C4	115.5 (7)	C10-C5-C4	129.8 (8)
C17—O3—C10	118.2 (6)	C10-C5-C6	118.5 (7)
C24—O5—C23	114.9 (8)	C5C6C1	108.9 (7)
C6C1C2	108.4 (7)	C23—C6—C1	109.9 (7)
C7C1C2	108.1 (7)	C23C6C5	110.3 (7)
C7C1C6	107.5 (7)	C8C7C1	112.1 (7)
C1C2O1	126.5 (9)	C7C8C4	108.0 (7)
C3C2O1	121.1 (8)	C5-C10-O3	114.9 (7)
C3C2C1	112.4 (8)	C11-C10-O3	112.1 (7)
C4—C3—C2	108.7 (7)	C11C10C5	132.9 (7)
C3—C4—O2	110.2 (7)	C12-C11-C10	121.3 (4)
C5—C4—O2	115.8 (7)	C16-C11-C10	118.7 (4)
C5—C4—C3	110.6 (7)	C18-C17-O3	121.6 (4)
C8C4O2	105.3 (7)	C22—C17—O3	118.4 (4)
C8—C4—C3	107.3 (7)	O5—C23—O4	125.2 (11)
C8—C4—C5	107.2 (7)	C6-C23-O4	126.2 (10)
C6C5C4	111.7 (7)	C6—C23—O5	108.6 (9)

Table 6. Hydrogen-bonding geometry (Å, °) for (II)

$D - H \cdot \cdot \cdot A$	$\mathbf{H} \cdots \mathbf{A}$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
C7—H7A···OI'	2.508 (19)	3.293 (9)	128.7 (8)
C7—H7 <i>B</i> ···O4 ⁿ	2.382 (14)	3.423 (10)	161.5 (14)

C16-H16· · · O5 ^m	2.717 (18)	3.450 (8)	124.9 (8)
C18—H18· · · O4 ⁱⁱ	2.511 (15)	3.252 (8)	124.9 (13)
C20—H20· · ·O1 [™]	2.633 (18)	3.380 (6)	125.8 (6)
Symmetry codes: (i) 1	-x, -y, 2-z; (ii)	x - 1, y, z; (iii)	$x, \frac{1}{2} - y, z - \frac{1}{2};$
(iv) $x = 1, \frac{1}{2} - y, z = 1$	<u>1</u> .		

For both compounds, full-matrix anisotropic refinement on F of the non-H atoms was carried out using *SHELX76* (Sheldrick, 1976). H atoms were placed at calculated positions, with a fixed common U of 0.08 Å², and were allowed to ride on their corresponding C atoms. During the final stages of refinement on compound (II), the C atoms of the benzene rings were constrained to a hexagonal geometry. Weights used were of the form $w = k/[\sigma^2(F) + gF^2]$, with g = 0.000625 for (I) and 0.00005 for (II). With an initial value of k = 1, the final recalculated values obtained were k = 1.1685 and 1.2738 for (I) and (II), respectively. All calculations were carried out using a VAX3400 computer at the Computer Centre, Indian Association for the Cultivation of Science, Calcutta, India.

Data collection: SHELXTL-Plus88 (Sheldrick, 1988) for (I); local program for (II). Cell refinement: SHELXTL-Plus88 for (I); local program for (II). Data reduction: SHELXTL-Plus88 for (I); local program for (II). For both compounds, program(s) used to solve structures: MULTAN88 (Debaerdemaeker et al., 1988); molecular graphics: ORTEPII (Johnson, 1976). Calculation of geometric parameters: PARST (Nardelli, 1983).

The authors thank Dr S. Chandra for collecting intensity data for the first crystal at the National Facility for Single Crystal Diffractometry at the Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, India. We are also grateful to Professor J. K. Dattagupta for permitting the use of the diffractometer system assembled by him at the Saha Institute of Nuclear Physics, Calcutta, India, and for collecting the intensity data for the second crystal.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: DE1017). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Debaerdemaeker, T., Germain, G., Main, P., Refaat, L. S., Tate, C. & Woolfson, M. M. (1988). MULTAN88. A System of Computer Programs for the Automatic Solution of Crystal Structures from Xray Diffraction Data. Universities of York, England, and Louvain, Belgium.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lahiri, S. & Singh, R. (1989). Indian J. Chem. 28B, 860-862.
- Mukhopadhyay, A., Ray, S. & Lahiri, S. (1987). Acta Cryst. C43, 2175-2177.
- Nardelli, M. (1983). Comput. Chem. 7, 95-98
- Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
- Sheldrick, G. M. (1988). SHELXTL-Plus88 Structure Determination Software Programs. Nicolet Instrument Corporation, Madison, Wisconsin, USA.
- Singh, R., Sinha, A. & Lahiri, S. (1992). J. Chem. Res. (S), pp. 372-373